Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | brovpreldm | ⊢ ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br | ⊢ ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 ↔ 〈 𝐷 , 𝐸 〉 ∈ ( 𝐵 𝐴 𝐶 ) ) | |
2 | ne0i | ⊢ ( 〈 𝐷 , 𝐸 〉 ∈ ( 𝐵 𝐴 𝐶 ) → ( 𝐵 𝐴 𝐶 ) ≠ ∅ ) | |
3 | df-ov | ⊢ ( 𝐵 𝐴 𝐶 ) = ( 𝐴 ‘ 〈 𝐵 , 𝐶 〉 ) | |
4 | ndmfv | ⊢ ( ¬ 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 → ( 𝐴 ‘ 〈 𝐵 , 𝐶 〉 ) = ∅ ) | |
5 | 3 4 | eqtrid | ⊢ ( ¬ 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 → ( 𝐵 𝐴 𝐶 ) = ∅ ) |
6 | 5 | necon1ai | ⊢ ( ( 𝐵 𝐴 𝐶 ) ≠ ∅ → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 ) |
7 | 2 6 | syl | ⊢ ( 〈 𝐷 , 𝐸 〉 ∈ ( 𝐵 𝐴 𝐶 ) → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 ) |
8 | 1 7 | sylbi | ⊢ ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐴 ) |