Metamath Proof Explorer


Theorem brovpreldm

Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020)

Ref Expression
Assertion brovpreldm ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 → ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 ↔ ⟨ 𝐷 , 𝐸 ⟩ ∈ ( 𝐵 𝐴 𝐶 ) )
2 ne0i ( ⟨ 𝐷 , 𝐸 ⟩ ∈ ( 𝐵 𝐴 𝐶 ) → ( 𝐵 𝐴 𝐶 ) ≠ ∅ )
3 df-ov ( 𝐵 𝐴 𝐶 ) = ( 𝐴 ‘ ⟨ 𝐵 , 𝐶 ⟩ )
4 ndmfv ( ¬ ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 → ( 𝐴 ‘ ⟨ 𝐵 , 𝐶 ⟩ ) = ∅ )
5 3 4 eqtrid ( ¬ ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 → ( 𝐵 𝐴 𝐶 ) = ∅ )
6 5 necon1ai ( ( 𝐵 𝐴 𝐶 ) ≠ ∅ → ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 )
7 2 6 syl ( ⟨ 𝐷 , 𝐸 ⟩ ∈ ( 𝐵 𝐴 𝐶 ) → ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 )
8 1 7 sylbi ( 𝐷 ( 𝐵 𝐴 𝐶 ) 𝐸 → ⟨ 𝐵 , 𝐶 ⟩ ∈ dom 𝐴 )