Metamath Proof Explorer


Theorem brparts

Description: Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021)

Ref Expression
Assertion brparts ( 𝐴𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 df-parts Parts = ( DomainQss ↾ Disjs )
2 1 eqres ( 𝐴𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )