Metamath Proof Explorer


Theorem brparts2

Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)

Ref Expression
Assertion brparts2 ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 brparts ( 𝐴𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )
2 1 adantr ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )
3 brdmqss ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4 3 anbi2d ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) )
5 2 4 bitrd ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) )