Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | brparts2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brparts | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) ) |
3 | brdmqss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
4 | 3 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ) |
5 | 2 4 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ) |