Metamath Proof Explorer


Theorem brpartspart

Description: Binary partition and the partition predicate are the same if A and R are sets. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion brpartspart ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴𝑅 Part 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eldisjsdisj ( 𝑅𝑊 → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) )
2 1 adantl ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 ∈ Disjs ↔ Disj 𝑅 ) )
3 brdmqssqs ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴 ) )
4 2 3 anbi12d ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) ) )
5 brparts ( 𝐴𝑉 → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )
6 5 adantr ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴 ↔ ( 𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴 ) ) )
7 df-part ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) )
8 7 a1i ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) ) )
9 4 6 8 3bitr4d ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Parts 𝐴𝑅 Part 𝐴 ) )