Step |
Hyp |
Ref |
Expression |
1 |
|
dtru |
⊢ ¬ ∀ 𝑦 𝑦 = 𝑥 |
2 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 𝑥 = 𝑦 ) |
3 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑦 𝑥 = 𝑦 ↔ ∀ 𝑦 𝑦 = 𝑥 ) |
5 |
2 4
|
xchbinx |
⊢ ( ∃ 𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
6 |
1 5
|
mpbir |
⊢ ∃ 𝑦 ¬ 𝑥 = 𝑦 |
7 |
6
|
jctr |
⊢ ( ∅ ∈ 𝐹 → ( ∅ ∈ 𝐹 ∧ ∃ 𝑦 ¬ 𝑥 = 𝑦 ) ) |
8 |
|
19.42v |
⊢ ( ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ∅ ∈ 𝐹 ∧ ∃ 𝑦 ¬ 𝑥 = 𝑦 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ∅ ∈ 𝐹 → ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) |
10 |
|
opprc1 |
⊢ ( ¬ 𝐴 ∈ V → 〈 𝐴 , 𝑥 〉 = ∅ ) |
11 |
10
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
12 |
|
opprc1 |
⊢ ( ¬ 𝐴 ∈ V → 〈 𝐴 , 𝑦 〉 = ∅ ) |
13 |
12
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
14 |
11 13
|
anbi12d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ↔ ( ∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹 ) ) ) |
15 |
|
anidm |
⊢ ( ( ∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹 ) ↔ ∅ ∈ 𝐹 ) |
16 |
14 15
|
bitrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ↔ ∅ ∈ 𝐹 ) ) |
17 |
16
|
anbi1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) |
18 |
17
|
exbidv |
⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) |
19 |
11 18
|
imbi12d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 → ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) ↔ ( ∅ ∈ 𝐹 → ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) ) |
20 |
9 19
|
mpbiri |
⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 → ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
21 |
|
df-br |
⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) |
22 |
|
df-br |
⊢ ( 𝐴 𝐹 𝑦 ↔ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) |
23 |
21 22
|
anbi12i |
⊢ ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ↔ ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ) |
24 |
23
|
anbi1i |
⊢ ( ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
25 |
24
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
26 |
20 21 25
|
3imtr4g |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 𝐹 𝑥 → ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
27 |
26
|
eximdv |
⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
28 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
29 |
|
exanali |
⊢ ( ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
30 |
29
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
31 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 𝐹 𝑥 ↔ 𝐴 𝐹 𝑦 ) ) |
32 |
31
|
mo4 |
⊢ ( ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
33 |
32
|
notbii |
⊢ ( ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
34 |
28 30 33
|
3bitr4ri |
⊢ ( ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
35 |
27 34
|
syl6ibr |
⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
36 |
|
df-eu |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
37 |
36
|
notbii |
⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ¬ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
38 |
|
imnan |
⊢ ( ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ↔ ¬ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
39 |
37 38
|
bitr4i |
⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
40 |
35 39
|
sylibr |
⊢ ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) |