Metamath Proof Explorer


Theorem brralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brralrspcev ( ( 𝐵𝑋 ∧ ∀ 𝑦𝑌 𝐴 𝑅 𝐵 ) → ∃ 𝑥𝑋𝑦𝑌 𝐴 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥𝐴 𝑅 𝐵 ) )
2 1 ralbidv ( 𝑥 = 𝐵 → ( ∀ 𝑦𝑌 𝐴 𝑅 𝑥 ↔ ∀ 𝑦𝑌 𝐴 𝑅 𝐵 ) )
3 2 rspcev ( ( 𝐵𝑋 ∧ ∀ 𝑦𝑌 𝐴 𝑅 𝐵 ) → ∃ 𝑥𝑋𝑦𝑌 𝐴 𝑅 𝑥 )