Metamath Proof Explorer


Theorem brresi

Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006)

Ref Expression
Hypothesis opelresi.1 𝐶 ∈ V
Assertion brresi ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 opelresi.1 𝐶 ∈ V
2 brres ( 𝐶 ∈ V → ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
3 1 2 ax-mp ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) )