Metamath Proof Explorer


Theorem brressn

Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion brressn ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 = 𝐴𝐵 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 brres ( 𝐶𝑊 → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ) )
2 1 adantl ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ) )
3 elsng ( 𝐵𝑉 → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) )
4 3 adantr ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) )
5 4 anbi1d ( ( 𝐵𝑉𝐶𝑊 ) → ( ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ↔ ( 𝐵 = 𝐴𝐵 𝑅 𝐶 ) ) )
6 2 5 bitrd ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 = 𝐴𝐵 𝑅 𝐶 ) ) )