Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | brressn | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 = 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ) ) | |
2 | 1 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ) ) |
3 | elsng | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) ) | |
4 | 3 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) ) |
5 | 4 | anbi1d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 𝑅 𝐶 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
6 | 2 5 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ( 𝑅 ↾ { 𝐴 } ) 𝐶 ↔ ( 𝐵 = 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |