| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ric | ⊢  ≃𝑟   =  ( ◡  RingIso   “  ( V  ∖  1o ) ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑟  RingHom  𝑠 )  ∈  V | 
						
							| 3 |  | rabexg | ⊢ ( ( 𝑟  RingHom  𝑠 )  ∈  V  →  { ℎ  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ ℎ  ∈  ( 𝑠  RingHom  𝑟 ) }  ∈  V ) | 
						
							| 4 | 2 3 | mp1i | ⊢ ( ( 𝑟  ∈  V  ∧  𝑠  ∈  V )  →  { ℎ  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ ℎ  ∈  ( 𝑠  RingHom  𝑟 ) }  ∈  V ) | 
						
							| 5 | 4 | rgen2 | ⊢ ∀ 𝑟  ∈  V ∀ 𝑠  ∈  V { ℎ  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ ℎ  ∈  ( 𝑠  RingHom  𝑟 ) }  ∈  V | 
						
							| 6 |  | df-rim | ⊢  RingIso   =  ( 𝑟  ∈  V ,  𝑠  ∈  V  ↦  { ℎ  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ ℎ  ∈  ( 𝑠  RingHom  𝑟 ) } ) | 
						
							| 7 | 6 | fnmpo | ⊢ ( ∀ 𝑟  ∈  V ∀ 𝑠  ∈  V { ℎ  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ ℎ  ∈  ( 𝑠  RingHom  𝑟 ) }  ∈  V  →   RingIso   Fn  ( V  ×  V ) ) | 
						
							| 8 | 5 7 | ax-mp | ⊢  RingIso   Fn  ( V  ×  V ) | 
						
							| 9 | 1 8 | brwitnlem | ⊢ ( 𝑅  ≃𝑟  𝑆  ↔  ( 𝑅  RingIso  𝑆 )  ≠  ∅ ) |