| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brric | ⊢ ( 𝑅  ≃𝑟  𝑆  ↔  ( 𝑅  RingIso  𝑆 )  ≠  ∅ ) | 
						
							| 2 |  | n0 | ⊢ ( ( 𝑅  RingIso  𝑆 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingIso  𝑆 ) ) | 
						
							| 3 |  | rimrhm | ⊢ ( 𝑓  ∈  ( 𝑅  RingIso  𝑆 )  →  𝑓  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 6 | 4 5 | isrhm | ⊢ ( 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring )  ∧  ( 𝑓  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝑓  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 7 | 6 | simplbi | ⊢ ( 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝑓  ∈  ( 𝑅  RingIso  𝑆 )  →  ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring ) ) | 
						
							| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑓 𝑓  ∈  ( 𝑅  RingIso  𝑆 )  →  ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring ) ) | 
						
							| 10 | 9 | pm4.71ri | ⊢ ( ∃ 𝑓 𝑓  ∈  ( 𝑅  RingIso  𝑆 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingIso  𝑆 ) ) ) | 
						
							| 11 | 1 2 10 | 3bitri | ⊢ ( 𝑅  ≃𝑟  𝑆  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  Ring )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingIso  𝑆 ) ) ) |