Metamath Proof Explorer


Theorem brric2

Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric2 ( 𝑅𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 brric ( 𝑅𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ )
2 n0 ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) )
3 rimrcl ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) )
4 isrim0 ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) ) ) )
5 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
6 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
7 5 6 isrhm ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) )
8 7 simplbi ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
9 8 adantr ( ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
10 4 9 syl6bi ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ) )
11 3 10 mpcom ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
12 11 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
13 12 pm4.71ri ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )
14 1 2 13 3bitri ( 𝑅𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )