Metamath Proof Explorer


Theorem brric2

Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric2 ( 𝑅𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 brric ( 𝑅𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ )
2 n0 ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) )
3 rimrhm ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) )
4 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
5 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
6 4 5 isrhm ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) )
7 6 simplbi ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
8 3 7 syl ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
9 8 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) )
10 9 pm4.71ri ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )
11 1 2 10 3bitri ( 𝑅𝑟 𝑆 ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) )