| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐵  ∈  𝑉  →  𝐵  ∈  V ) | 
						
							| 2 |  | relrpss | ⊢ Rel   [⊊] | 
						
							| 3 | 2 | brrelex1i | ⊢ ( 𝐴  [⊊]  𝐵  →  𝐴  ∈  V ) | 
						
							| 4 | 1 3 | anim12i | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  [⊊]  𝐵 )  →  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) ) | 
						
							| 5 | 1 | adantr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  ⊊  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 6 |  | pssss | ⊢ ( 𝐴  ⊊  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 7 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 8 | 6 1 7 | syl2anr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  ⊊  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 9 | 5 8 | jca | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐴  ⊊  𝐵 )  →  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) ) | 
						
							| 10 |  | psseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊊  𝑦  ↔  𝐴  ⊊  𝑦 ) ) | 
						
							| 11 |  | psseq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ⊊  𝑦  ↔  𝐴  ⊊  𝐵 ) ) | 
						
							| 12 |  | df-rpss | ⊢  [⊊]   =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ⊊  𝑦 } | 
						
							| 13 | 10 11 12 | brabg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  [⊊]  𝐵  ↔  𝐴  ⊊  𝐵 ) ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝐴  [⊊]  𝐵  ↔  𝐴  ⊊  𝐵 ) ) | 
						
							| 15 | 4 9 14 | pm5.21nd | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  [⊊]  𝐵  ↔  𝐴  ⊊  𝐵 ) ) |