Metamath Proof Explorer


Theorem brsdom2

Description: Alternate definition of strict dominance. Definition 3 of Suppes p. 97. (Contributed by NM, 27-Jul-2004)

Ref Expression
Hypotheses brsdom2.1 𝐴 ∈ V
brsdom2.2 𝐵 ∈ V
Assertion brsdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 brsdom2.1 𝐴 ∈ V
2 brsdom2.2 𝐵 ∈ V
3 dfsdom2 ≺ = ( ≼ ∖ ≼ )
4 3 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≼ ) )
5 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ )
6 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ )
7 df-br ( 𝐵𝐴 ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ ≼ )
8 1 2 opelcnv ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ ≼ )
9 7 8 bitr4i ( 𝐵𝐴 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ )
10 9 notbii ( ¬ 𝐵𝐴 ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ )
11 6 10 anbi12i ( ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ) )
12 eldif ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≼ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ) )
13 11 12 bitr4i ( ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≼ ) )
14 4 5 13 3bitr4i ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐵𝐴 ) )