Step |
Hyp |
Ref |
Expression |
1 |
|
sscrel |
⊢ Rel ⊆cat |
2 |
1
|
brrelex12i |
⊢ ( 𝐻 ⊆cat 𝐽 → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
3 |
|
vex |
⊢ 𝑡 ∈ V |
4 |
3 3
|
xpex |
⊢ ( 𝑡 × 𝑡 ) ∈ V |
5 |
|
fnex |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑡 × 𝑡 ) ∈ V ) → 𝐽 ∈ V ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → 𝐽 ∈ V ) |
7 |
|
elex |
⊢ ( 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 ∈ V ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 ∈ V ) |
9 |
6 8
|
anim12ci |
⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
10 |
9
|
exlimiv |
⊢ ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
11 |
|
simpr |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) |
12 |
11
|
fneq1d |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( 𝑗 Fn ( 𝑡 × 𝑡 ) ↔ 𝐽 Fn ( 𝑡 × 𝑡 ) ) ) |
13 |
|
simpl |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ℎ = 𝐻 ) |
14 |
11
|
fveq1d |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( 𝑗 ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
15 |
14
|
pweqd |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → 𝒫 ( 𝑗 ‘ 𝑥 ) = 𝒫 ( 𝐽 ‘ 𝑥 ) ) |
16 |
15
|
ixpeq2dv |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) |
17 |
13 16
|
eleq12d |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ↔ 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
18 |
17
|
rexbidv |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ↔ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
19 |
12 18
|
anbi12d |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) ↔ ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
20 |
19
|
exbidv |
⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
21 |
|
df-ssc |
⊢ ⊆cat = { 〈 ℎ , 𝑗 〉 ∣ ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) } |
22 |
20 21
|
brabga |
⊢ ( ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) → ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
23 |
2 10 22
|
pm5.21nii |
⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |