Metamath Proof Explorer


Theorem brsuccf

Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Hypotheses brsuccf.1 𝐴 ∈ V
brsuccf.2 𝐵 ∈ V
Assertion brsuccf ( 𝐴 Succ 𝐵𝐵 = suc 𝐴 )

Proof

Step Hyp Ref Expression
1 brsuccf.1 𝐴 ∈ V
2 brsuccf.2 𝐵 ∈ V
3 df-succf Succ = ( Cup ∘ ( I ⊗ Singleton ) )
4 3 breqi ( 𝐴 Succ 𝐵𝐴 ( Cup ∘ ( I ⊗ Singleton ) ) 𝐵 )
5 1 2 brco ( 𝐴 ( Cup ∘ ( I ⊗ Singleton ) ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ( I ⊗ Singleton ) 𝑥𝑥 Cup 𝐵 ) )
6 1 2 lemsuccf ( ∃ 𝑥 ( 𝐴 ( I ⊗ Singleton ) 𝑥𝑥 Cup 𝐵 ) ↔ 𝐵 = suc 𝐴 )
7 4 5 6 3bitri ( 𝐴 Succ 𝐵𝐵 = suc 𝐴 )