Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsuccf.1 | ⊢ 𝐴 ∈ V | |
| brsuccf.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brsuccf | ⊢ ( 𝐴 Succ 𝐵 ↔ 𝐵 = suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsuccf.1 | ⊢ 𝐴 ∈ V | |
| 2 | brsuccf.2 | ⊢ 𝐵 ∈ V | |
| 3 | df-succf | ⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) | |
| 4 | 3 | breqi | ⊢ ( 𝐴 Succ 𝐵 ↔ 𝐴 ( Cup ∘ ( I ⊗ Singleton ) ) 𝐵 ) |
| 5 | 1 2 | brco | ⊢ ( 𝐴 ( Cup ∘ ( I ⊗ Singleton ) ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝐵 ) ) |
| 6 | 1 2 | lemsuccf | ⊢ ( ∃ 𝑥 ( 𝐴 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝐵 ) ↔ 𝐵 = suc 𝐴 ) |
| 7 | 4 5 6 | 3bitri | ⊢ ( 𝐴 Succ 𝐵 ↔ 𝐵 = suc 𝐴 ) |