Metamath Proof Explorer


Theorem brsymdif

Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion brsymdif ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ¬ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑆 ) )
2 elsymdif ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑆 ) ↔ ¬ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 ) )
3 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
4 df-br ( 𝐴 𝑆 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 )
5 3 4 bibi12i ( ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 ) )
6 2 5 xchbinxr ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑆 ) ↔ ¬ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )
7 1 6 bitri ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ¬ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )