| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brtpos2 | ⊢ ( 𝐴  ∈  𝑉  →  ( ∅ tpos  𝐹 𝐴  ↔  ( ∅  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ∧  ∪  ◡ { ∅ } 𝐹 𝐴 ) ) ) | 
						
							| 2 |  | ssun2 | ⊢ { ∅ }  ⊆  ( ◡ dom  𝐹  ∪  { ∅ } ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 | 3 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 5 | 2 4 | sselii | ⊢ ∅  ∈  ( ◡ dom  𝐹  ∪  { ∅ } ) | 
						
							| 6 | 5 | biantrur | ⊢ ( ∪  ◡ { ∅ } 𝐹 𝐴  ↔  ( ∅  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ∧  ∪  ◡ { ∅ } 𝐹 𝐴 ) ) | 
						
							| 7 |  | cnvsn0 | ⊢ ◡ { ∅ }  =  ∅ | 
						
							| 8 | 7 | unieqi | ⊢ ∪  ◡ { ∅ }  =  ∪  ∅ | 
						
							| 9 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 10 | 8 9 | eqtri | ⊢ ∪  ◡ { ∅ }  =  ∅ | 
						
							| 11 | 10 | breq1i | ⊢ ( ∪  ◡ { ∅ } 𝐹 𝐴  ↔  ∅ 𝐹 𝐴 ) | 
						
							| 12 | 6 11 | bitr3i | ⊢ ( ( ∅  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ∧  ∪  ◡ { ∅ } 𝐹 𝐴 )  ↔  ∅ 𝐹 𝐴 ) | 
						
							| 13 | 1 12 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( ∅ tpos  𝐹 𝐴  ↔  ∅ 𝐹 𝐴 ) ) |