| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relttrcl | ⊢ Rel  t++ 𝑅 | 
						
							| 2 | 1 | brrelex12i | ⊢ ( 𝐴 t++ 𝑅 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 3 |  | fvex | ⊢ ( 𝑓 ‘ ∅ )  ∈  V | 
						
							| 4 |  | eleq1 | ⊢ ( ( 𝑓 ‘ ∅ )  =  𝐴  →  ( ( 𝑓 ‘ ∅ )  ∈  V  ↔  𝐴  ∈  V ) ) | 
						
							| 5 | 3 4 | mpbii | ⊢ ( ( 𝑓 ‘ ∅ )  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 |  | fvex | ⊢ ( 𝑓 ‘ 𝑛 )  ∈  V | 
						
							| 7 |  | eleq1 | ⊢ ( ( 𝑓 ‘ 𝑛 )  =  𝐵  →  ( ( 𝑓 ‘ 𝑛 )  ∈  V  ↔  𝐵  ∈  V ) ) | 
						
							| 8 | 6 7 | mpbii | ⊢ ( ( 𝑓 ‘ 𝑛 )  =  𝐵  →  𝐵  ∈  V ) | 
						
							| 9 | 5 8 | anim12i | ⊢ ( ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 12 | 11 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 13 |  | eqeq2 | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑓 ‘ ∅ )  =  𝑥  ↔  ( 𝑓 ‘ ∅ )  =  𝐴 ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 ) ) ) | 
						
							| 15 | 14 | 3anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 16 | 15 | exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 18 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑓 ‘ 𝑛 )  =  𝑦  ↔  ( 𝑓 ‘ 𝑛 )  =  𝐵 ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 ) ) ) | 
						
							| 20 | 19 | 3anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 21 | 20 | exbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 22 | 21 | rexbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 23 |  | df-ttrcl | ⊢ t++ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) } | 
						
							| 24 | 17 22 23 | brabg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 t++ 𝑅 𝐵  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 25 | 2 12 24 | pm5.21nii | ⊢ ( 𝐴 t++ 𝑅 𝐵  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) |