| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brttrcl | ⊢ ( 𝐴 t++ 𝑅 𝐵  ↔  ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 2 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 3 | 2 | difeq2i | ⊢ ( ω  ∖  1o )  =  ( ω  ∖  suc  ∅ ) | 
						
							| 4 | 3 | eleq2i | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  ↔  𝑚  ∈  ( ω  ∖  suc  ∅ ) ) | 
						
							| 5 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 6 |  | eldifsucnn | ⊢ ( ∅  ∈  ω  →  ( 𝑚  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑛  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑛 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 𝑚  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑛  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑛 ) | 
						
							| 8 |  | dif0 | ⊢ ( ω  ∖  ∅ )  =  ω | 
						
							| 9 | 8 | rexeqi | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑛  ↔  ∃ 𝑛  ∈  ω 𝑚  =  suc  𝑛 ) | 
						
							| 10 | 4 7 9 | 3bitri | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  ↔  ∃ 𝑛  ∈  ω 𝑚  =  suc  𝑛 ) | 
						
							| 11 | 10 | anbi1i | ⊢ ( ( 𝑚  ∈  ( ω  ∖  1o )  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 12 |  | r19.41v | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 13 | 11 12 | bitr4i | ⊢ ( ( 𝑚  ∈  ( ω  ∖  1o )  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ∃ 𝑛  ∈  ω ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 14 | 13 | exbii | ⊢ ( ∃ 𝑚 ( 𝑚  ∈  ( ω  ∖  1o )  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ∃ 𝑚 ∃ 𝑛  ∈  ω ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 15 |  | df-rex | ⊢ ( ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑚 ( 𝑚  ∈  ( ω  ∖  1o )  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 16 |  | rexcom4 | ⊢ ( ∃ 𝑛  ∈  ω ∃ 𝑚 ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ∃ 𝑚 ∃ 𝑛  ∈  ω ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 17 | 14 15 16 | 3bitr4i | ⊢ ( ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑛  ∈  ω ∃ 𝑚 ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 18 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 19 | 18 | sucex | ⊢ suc  𝑛  ∈  V | 
						
							| 20 |  | suceq | ⊢ ( 𝑚  =  suc  𝑛  →  suc  𝑚  =  suc  suc  𝑛 ) | 
						
							| 21 | 20 | fneq2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( 𝑓  Fn  suc  𝑚  ↔  𝑓  Fn  suc  suc  𝑛 ) ) | 
						
							| 22 |  | fveqeq2 | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( 𝑓 ‘ 𝑚 )  =  𝐵  ↔  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 ) ) ) | 
						
							| 24 |  | raleq | ⊢ ( 𝑚  =  suc  𝑛  →  ( ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 25 | 21 23 24 | 3anbi123d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 26 | 25 | exbidv | ⊢ ( 𝑚  =  suc  𝑛  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 27 | 19 26 | ceqsexv | ⊢ ( ∃ 𝑚 ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 28 | 27 | rexbii | ⊢ ( ∃ 𝑛  ∈  ω ∃ 𝑚 ( 𝑚  =  suc  𝑛  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) )  ↔  ∃ 𝑛  ∈  ω ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 29 | 1 17 28 | 3bitri | ⊢ ( 𝐴 t++ 𝑅 𝐵  ↔  ∃ 𝑛  ∈  ω ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝐴  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝐵 )  ∧  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) |