Metamath Proof Explorer


Theorem brun

Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008)

Ref Expression
Assertion brun ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elun ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑆 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ∨ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 ) )
2 df-br ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅𝑆 ) )
3 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
4 df-br ( 𝐴 𝑆 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 )
5 3 4 orbi12i ( ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ∨ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 ) )
6 1 2 5 3bitr4i ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )