Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ V ) |
2 |
|
relwdom |
⊢ Rel ≼* |
3 |
2
|
brrelex1i |
⊢ ( 𝑋 ≼* 𝑌 → 𝑋 ∈ V ) |
4 |
3
|
a1i |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 → 𝑋 ∈ V ) ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
|
eleq1a |
⊢ ( ∅ ∈ V → ( 𝑋 = ∅ → 𝑋 ∈ V ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝑋 = ∅ → 𝑋 ∈ V ) |
8 |
|
forn |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ran 𝑧 = 𝑋 ) |
9 |
|
vex |
⊢ 𝑧 ∈ V |
10 |
9
|
rnex |
⊢ ran 𝑧 ∈ V |
11 |
8 10
|
eqeltrrdi |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑋 ∈ V ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑋 ∈ V ) |
13 |
7 12
|
jaoi |
⊢ ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) |
14 |
13
|
a1i |
⊢ ( 𝑌 ∈ V → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) ) |
16 |
|
foeq3 |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 : 𝑦 –onto→ 𝑥 ↔ 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
17 |
16
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ↔ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
18 |
15 17
|
orbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) ) |
19 |
|
foeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
20 |
19
|
exbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
21 |
20
|
orbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
22 |
|
df-wdom |
⊢ ≼* = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ) } |
23 |
18 21 22
|
brabg |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
24 |
23
|
expcom |
⊢ ( 𝑌 ∈ V → ( 𝑋 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) ) |
25 |
4 14 24
|
pm5.21ndd |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
26 |
1 25
|
syl |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |