Metamath Proof Explorer


Theorem brwdom

Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion brwdom ( 𝑌𝑉 → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝑌𝑉𝑌 ∈ V )
2 relwdom Rel ≼*
3 2 brrelex1i ( 𝑋* 𝑌𝑋 ∈ V )
4 3 a1i ( 𝑌 ∈ V → ( 𝑋* 𝑌𝑋 ∈ V ) )
5 0ex ∅ ∈ V
6 eleq1a ( ∅ ∈ V → ( 𝑋 = ∅ → 𝑋 ∈ V ) )
7 5 6 ax-mp ( 𝑋 = ∅ → 𝑋 ∈ V )
8 forn ( 𝑧 : 𝑌onto𝑋 → ran 𝑧 = 𝑋 )
9 vex 𝑧 ∈ V
10 9 rnex ran 𝑧 ∈ V
11 8 10 eqeltrrdi ( 𝑧 : 𝑌onto𝑋𝑋 ∈ V )
12 11 exlimiv ( ∃ 𝑧 𝑧 : 𝑌onto𝑋𝑋 ∈ V )
13 7 12 jaoi ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) → 𝑋 ∈ V )
14 13 a1i ( 𝑌 ∈ V → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) → 𝑋 ∈ V ) )
15 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) )
16 foeq3 ( 𝑥 = 𝑋 → ( 𝑧 : 𝑦onto𝑥𝑧 : 𝑦onto𝑋 ) )
17 16 exbidv ( 𝑥 = 𝑋 → ( ∃ 𝑧 𝑧 : 𝑦onto𝑥 ↔ ∃ 𝑧 𝑧 : 𝑦onto𝑋 ) )
18 15 17 orbi12d ( 𝑥 = 𝑋 → ( ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦onto𝑥 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦onto𝑋 ) ) )
19 foeq2 ( 𝑦 = 𝑌 → ( 𝑧 : 𝑦onto𝑋𝑧 : 𝑌onto𝑋 ) )
20 19 exbidv ( 𝑦 = 𝑌 → ( ∃ 𝑧 𝑧 : 𝑦onto𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )
21 20 orbi2d ( 𝑦 = 𝑌 → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦onto𝑋 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
22 df-wdom * = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦onto𝑥 ) }
23 18 21 22 brabg ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
24 23 expcom ( 𝑌 ∈ V → ( 𝑋 ∈ V → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) ) )
25 4 14 24 pm5.21ndd ( 𝑌 ∈ V → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
26 1 25 syl ( 𝑌𝑉 → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )