Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
2 |
|
elex |
⊢ ( 𝑌 ∈ 𝑊 → 𝑌 ∈ V ) |
3 |
|
brwdom2 |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 ) ) |
5 |
|
dffo3 |
⊢ ( 𝑓 : 𝑧 –onto→ 𝑋 ↔ ( 𝑓 : 𝑧 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑓 : 𝑧 –onto→ 𝑋 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
7 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑌 → 𝑧 ⊆ 𝑌 ) |
8 |
|
ssrexv |
⊢ ( 𝑧 ⊆ 𝑌 → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑧 ∈ 𝒫 𝑌 → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
11 |
10
|
ralimdv |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
12 |
6 11
|
syl5 |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( 𝑓 : 𝑧 –onto→ 𝑋 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
13 |
12
|
eximdv |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
14 |
13
|
rexlimdva |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
15 |
4 14
|
sylbid |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
16 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑋 ∈ V ) |
17 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑌 ∈ V ) |
18 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑤 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( 𝑓 ‘ 𝑤 ) ) ) |
22 |
21
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
23 |
19 22
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) ) |
24 |
23
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
25 |
24
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
27 |
26
|
r19.21bi |
⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
28 |
16 17 27
|
wdom2d |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑋 ≼* 𝑌 ) |
29 |
28
|
ex |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → 𝑋 ≼* 𝑌 ) ) |
30 |
29
|
exlimdv |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → 𝑋 ≼* 𝑌 ) ) |
31 |
15 30
|
impbid |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
32 |
1 2 31
|
syl2an |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |