Step |
Hyp |
Ref |
Expression |
1 |
|
relwdom |
⊢ Rel ≼* |
2 |
1
|
brrelex2i |
⊢ ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) |
3 |
2
|
a1i |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) ) |
4 |
|
fof |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑧 : 𝑌 ⟶ 𝑋 ) |
5 |
4
|
fdmd |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → dom 𝑧 = 𝑌 ) |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
6
|
dmex |
⊢ dom 𝑧 ∈ V |
8 |
5 7
|
eqeltrrdi |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) |
9 |
8
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) |
10 |
9
|
a1i |
⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) ) |
11 |
|
brwdom |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
12 |
|
df-ne |
⊢ ( 𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅ ) |
13 |
|
biorf |
⊢ ( ¬ 𝑋 = ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
14 |
12 13
|
sylbi |
⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
15 |
14
|
bicomd |
⊢ ( 𝑋 ≠ ∅ → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
16 |
11 15
|
sylan9bbr |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
17 |
16
|
ex |
⊢ ( 𝑋 ≠ ∅ → ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
18 |
3 10 17
|
pm5.21ndd |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |