Metamath Proof Explorer


Theorem brxp

Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004)

Ref Expression
Assertion brxp ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ( 𝐴𝐶𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶 × 𝐷 ) )
2 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶 × 𝐷 ) ↔ ( 𝐴𝐶𝐵𝐷 ) )
3 1 2 bitri ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ( 𝐴𝐶𝐵𝐷 ) )