Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
hltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
btwnhl.1 |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ) |
10 |
|
btwnhl.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
11 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
17 |
1 2 3 4 5 8 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ↔ ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) ) |
18 |
9 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) |
19 |
18
|
simp1d |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
20 |
19
|
necomd |
⊢ ( 𝜑 → 𝐷 ≠ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ≠ 𝐴 ) |
22 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
23 |
1 11 2 12 16 14 13 22
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) |
25 |
1 11 2 12 13 14 16 15 21 23 24
|
tgbtwnouttr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) ) |
26 |
1 11 2 12 13 14 15 25
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷 ∈ 𝑃 ) |
31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) |
33 |
1 11 2 27 30 29 28 32
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
34 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
35 |
1 11 2 27 28 29 30 31 33 34
|
tgbtwnexch3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |
36 |
18
|
simp3d |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) |
37 |
26 35 36
|
mpjaodan |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |