| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | btwnhl.1 | ⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵 ) | 
						
							| 10 |  | btwnhl.3 | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 11 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 12 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 17 | 1 2 3 4 5 8 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐷 ) 𝐵  ↔  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) ) | 
						
							| 18 | 9 17 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐷  ∧  𝐵  ≠  𝐷  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) ) | 
						
							| 19 | 18 | simp1d | ⊢ ( 𝜑  →  𝐴  ≠  𝐷 ) | 
						
							| 20 | 19 | necomd | ⊢ ( 𝜑  →  𝐷  ≠  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ≠  𝐴 ) | 
						
							| 22 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 23 | 1 11 2 12 16 14 13 22 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 25 | 1 11 2 12 13 14 16 15 21 23 24 | tgbtwnouttr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 26 | 1 11 2 12 13 14 15 25 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐷 𝐼 𝐵 ) )  →  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 27 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 28 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 30 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 31 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 33 | 1 11 2 27 30 29 28 32 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 34 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 35 | 1 11 2 27 28 29 30 31 33 34 | tgbtwnexch3 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 36 | 18 | simp3d | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐷 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐷 𝐼 𝐴 ) ) ) | 
						
							| 37 | 26 35 36 | mpjaodan | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) |