Metamath Proof Explorer


Theorem btwnhl

Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
hlln.1 ( 𝜑𝐺 ∈ TarskiG )
hltr.d ( 𝜑𝐷𝑃 )
btwnhl.1 ( 𝜑𝐴 ( 𝐾𝐷 ) 𝐵 )
btwnhl.3 ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) )
Assertion btwnhl ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 hlln.1 ( 𝜑𝐺 ∈ TarskiG )
8 hltr.d ( 𝜑𝐷𝑃 )
9 btwnhl.1 ( 𝜑𝐴 ( 𝐾𝐷 ) 𝐵 )
10 btwnhl.3 ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) )
11 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
12 7 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG )
13 6 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐶𝑃 )
14 8 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷𝑃 )
15 5 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐵𝑃 )
16 4 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴𝑃 )
17 1 2 3 4 5 8 7 ishlg ( 𝜑 → ( 𝐴 ( 𝐾𝐷 ) 𝐵 ↔ ( 𝐴𝐷𝐵𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) ) )
18 9 17 mpbid ( 𝜑 → ( 𝐴𝐷𝐵𝐷 ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) ) )
19 18 simp1d ( 𝜑𝐴𝐷 )
20 19 necomd ( 𝜑𝐷𝐴 )
21 20 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷𝐴 )
22 10 adantr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) )
23 1 11 2 12 16 14 13 22 tgbtwncom ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐴 ) )
24 simpr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) )
25 1 11 2 12 13 14 16 15 21 23 24 tgbtwnouttr ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐶 𝐼 𝐵 ) )
26 1 11 2 12 13 14 15 25 tgbtwncom ( ( 𝜑𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )
27 7 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG )
28 4 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐴𝑃 )
29 5 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵𝑃 )
30 8 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷𝑃 )
31 6 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐶𝑃 )
32 simpr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) )
33 1 11 2 27 30 29 28 32 tgbtwncom ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
34 10 adantr ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) )
35 1 11 2 27 28 29 30 31 33 34 tgbtwnexch3 ( ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )
36 18 simp3d ( 𝜑 → ( 𝐴 ∈ ( 𝐷 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐷 𝐼 𝐴 ) ) )
37 26 35 36 mpjaodan ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )