Metamath Proof Explorer


Theorem btwnhl1

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
hlln.1 ( 𝜑𝐺 ∈ TarskiG )
hltr.d ( 𝜑𝐷𝑃 )
btwnhl1.1 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) )
btwnhl1.2 ( 𝜑𝐴𝐵 )
btwnhl1.3 ( 𝜑𝐶𝐴 )
Assertion btwnhl1 ( 𝜑𝐶 ( 𝐾𝐴 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 hlln.1 ( 𝜑𝐺 ∈ TarskiG )
8 hltr.d ( 𝜑𝐷𝑃 )
9 btwnhl1.1 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) )
10 btwnhl1.2 ( 𝜑𝐴𝐵 )
11 btwnhl1.3 ( 𝜑𝐶𝐴 )
12 10 necomd ( 𝜑𝐵𝐴 )
13 9 orcd ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) )
14 1 2 3 6 5 4 7 ishlg ( 𝜑 → ( 𝐶 ( 𝐾𝐴 ) 𝐵 ↔ ( 𝐶𝐴𝐵𝐴 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) ) )
15 11 12 13 14 mpbir3and ( 𝜑𝐶 ( 𝐾𝐴 ) 𝐵 )