| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							hlln.1 | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 8 | 
							
								
							 | 
							hltr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							btwnhl1.1 | 
							⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							btwnhl1.2 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							btwnhl2.3 | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 13 | 
							
								1 12 2 7 4 6 5 9
							 | 
							tgbtwncom | 
							⊢ ( 𝜑  →  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							orcd | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 6 4 5 7
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) )  | 
						
						
							| 16 | 
							
								11 10 14 15
							 | 
							mpbir3and | 
							⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 )  |