Metamath Proof Explorer


Theorem btwnhl2

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p 𝑃 = ( Base ‘ 𝐺 )
ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
ishlg.a ( 𝜑𝐴𝑃 )
ishlg.b ( 𝜑𝐵𝑃 )
ishlg.c ( 𝜑𝐶𝑃 )
hlln.1 ( 𝜑𝐺 ∈ TarskiG )
hltr.d ( 𝜑𝐷𝑃 )
btwnhl1.1 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) )
btwnhl1.2 ( 𝜑𝐴𝐵 )
btwnhl2.3 ( 𝜑𝐶𝐵 )
Assertion btwnhl2 ( 𝜑𝐶 ( 𝐾𝐵 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 ishlg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishlg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishlg.k 𝐾 = ( hlG ‘ 𝐺 )
4 ishlg.a ( 𝜑𝐴𝑃 )
5 ishlg.b ( 𝜑𝐵𝑃 )
6 ishlg.c ( 𝜑𝐶𝑃 )
7 hlln.1 ( 𝜑𝐺 ∈ TarskiG )
8 hltr.d ( 𝜑𝐷𝑃 )
9 btwnhl1.1 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) )
10 btwnhl1.2 ( 𝜑𝐴𝐵 )
11 btwnhl2.3 ( 𝜑𝐶𝐵 )
12 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
13 1 12 2 7 4 6 5 9 tgbtwncom ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐴 ) )
14 13 orcd ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) )
15 1 2 3 6 4 5 7 ishlg ( 𝜑 → ( 𝐶 ( 𝐾𝐵 ) 𝐴 ↔ ( 𝐶𝐵𝐴𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) )
16 11 10 14 15 mpbir3and ( 𝜑𝐶 ( 𝐾𝐵 ) 𝐴 )