Metamath Proof Explorer


Theorem btwnleg

Description: Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019)

Ref Expression
Hypotheses legval.p 𝑃 = ( Base ‘ 𝐺 )
legval.d = ( dist ‘ 𝐺 )
legval.i 𝐼 = ( Itv ‘ 𝐺 )
legval.l = ( ≤G ‘ 𝐺 )
legval.g ( 𝜑𝐺 ∈ TarskiG )
legid.a ( 𝜑𝐴𝑃 )
legid.b ( 𝜑𝐵𝑃 )
legtrd.c ( 𝜑𝐶𝑃 )
btwnleg.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
Assertion btwnleg ( 𝜑 → ( 𝐴 𝐵 ) ( 𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 legval.p 𝑃 = ( Base ‘ 𝐺 )
2 legval.d = ( dist ‘ 𝐺 )
3 legval.i 𝐼 = ( Itv ‘ 𝐺 )
4 legval.l = ( ≤G ‘ 𝐺 )
5 legval.g ( 𝜑𝐺 ∈ TarskiG )
6 legid.a ( 𝜑𝐴𝑃 )
7 legid.b ( 𝜑𝐵𝑃 )
8 legtrd.c ( 𝜑𝐶𝑃 )
9 btwnleg.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
10 eqidd ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴 𝐵 ) )
11 eleq1 ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ↔ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) )
12 oveq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑥 ) = ( 𝐴 𝐵 ) )
13 12 eqeq2d ( 𝑥 = 𝐵 → ( ( 𝐴 𝐵 ) = ( 𝐴 𝑥 ) ↔ ( 𝐴 𝐵 ) = ( 𝐴 𝐵 ) ) )
14 11 13 anbi12d ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝑥 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝐵 ) ) ) )
15 14 rspcev ( ( 𝐵𝑃 ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝐵 ) ) ) → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝑥 ) ) )
16 7 9 10 15 syl12anc ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝑥 ) ) )
17 1 2 3 4 5 6 7 6 8 legov ( 𝜑 → ( ( 𝐴 𝐵 ) ( 𝐴 𝐶 ) ↔ ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝐴 𝐵 ) = ( 𝐴 𝑥 ) ) ) )
18 16 17 mpbird ( 𝜑 → ( 𝐴 𝐵 ) ( 𝐴 𝐶 ) )