Metamath Proof Explorer
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)
|
|
Ref |
Expression |
|
Hypotheses |
btwnlng1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
btwnlng1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
btwnlng1.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
btwnlng1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
btwnlng1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
|
|
btwnlng1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
|
|
btwnlng1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
|
|
btwnlng1.d |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
|
|
btwnlng2.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) |
|
Assertion |
btwnlng2 |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
btwnlng1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
btwnlng1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
btwnlng1.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
btwnlng1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
btwnlng1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
btwnlng1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
btwnlng1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
8 |
|
btwnlng1.d |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
9 |
|
btwnlng2.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) |
10 |
9
|
3mix2d |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
11 |
1 3 2 4 5 6 8 7
|
tgellng |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
12 |
10 11
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) |