Step |
Hyp |
Ref |
Expression |
1 |
|
zltp1le |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) ) |
2 |
|
peano2z |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) |
3 |
|
zre |
⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
6 |
|
lenlt |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
8 |
1 7
|
bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
10 |
9
|
impancom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℤ → ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
11 |
10
|
con2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 < ( 𝐴 + 1 ) → ¬ 𝐵 ∈ ℤ ) ) |
12 |
11
|
3impia |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) → ¬ 𝐵 ∈ ℤ ) |