Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
2 |
|
arch |
⊢ ( - 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 ) |
4 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
5 |
|
ltnegcon1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℝ → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) ) |
7 |
4 6
|
syl5 |
⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℕ → ( - 𝐴 < 𝑧 ↔ - 𝑧 < 𝐴 ) ) ) |
8 |
7
|
pm5.32d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ - 𝐴 < 𝑧 ) ↔ ( 𝑧 ∈ ℕ ∧ - 𝑧 < 𝐴 ) ) ) |
9 |
|
nnnegz |
⊢ ( 𝑧 ∈ ℕ → - 𝑧 ∈ ℤ ) |
10 |
|
breq1 |
⊢ ( 𝑥 = - 𝑧 → ( 𝑥 < 𝐴 ↔ - 𝑧 < 𝐴 ) ) |
11 |
10
|
rspcev |
⊢ ( ( - 𝑧 ∈ ℤ ∧ - 𝑧 < 𝐴 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
12 |
9 11
|
sylan |
⊢ ( ( 𝑧 ∈ ℕ ∧ - 𝑧 < 𝐴 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
13 |
8 12
|
syl6bi |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ - 𝐴 < 𝑧 ) → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) |
14 |
13
|
expd |
⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ ℕ → ( - 𝐴 < 𝑧 → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) ) |
15 |
14
|
rexlimdv |
⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑧 ∈ ℕ - 𝐴 < 𝑧 → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) ) |
16 |
3 15
|
mpd |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ) |
17 |
|
arch |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑦 ∈ ℕ 𝐴 < 𝑦 ) |
18 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
19 |
18
|
anim1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 < 𝑦 ) → ( 𝑦 ∈ ℤ ∧ 𝐴 < 𝑦 ) ) |
20 |
19
|
reximi2 |
⊢ ( ∃ 𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) |
21 |
17 20
|
syl |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) |
22 |
16 21
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃ 𝑦 ∈ ℤ 𝐴 < 𝑦 ) ) |