| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | flge | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  𝐴  ↔  0  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  0  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≤  𝐴  ∧  𝐴  <  ( 𝑁  +  1 ) ) )  →  ( 0  ≤  𝐴  ↔  0  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | flbi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ )  →  ( ( ⌊ ‘ 𝐴 )  =  𝑁  ↔  ( 𝑁  ≤  𝐴  ∧  𝐴  <  ( 𝑁  +  1 ) ) ) ) | 
						
							| 6 | 5 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≤  𝐴  ∧  𝐴  <  ( 𝑁  +  1 ) ) )  →  ( ⌊ ‘ 𝐴 )  =  𝑁 ) | 
						
							| 7 | 6 | breq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≤  𝐴  ∧  𝐴  <  ( 𝑁  +  1 ) ) )  →  ( 0  ≤  ( ⌊ ‘ 𝐴 )  ↔  0  ≤  𝑁 ) ) | 
						
							| 8 | 4 7 | bitrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≤  𝐴  ∧  𝐴  <  ( 𝑁  +  1 ) ) )  →  ( 0  ≤  𝐴  ↔  0  ≤  𝑁 ) ) |