| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bwt2.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
pm3.24 |
⊢ ¬ ( ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 3 |
2
|
a1i |
⊢ ( 𝑏 ∈ 𝑧 → ¬ ( ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) |
| 4 |
3
|
nrex |
⊢ ¬ ∃ 𝑏 ∈ 𝑧 ( ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 5 |
|
r19.29 |
⊢ ( ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) → ∃ 𝑏 ∈ 𝑧 ( ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) |
| 6 |
4 5
|
mto |
⊢ ¬ ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 7 |
6
|
a1i |
⊢ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) → ¬ ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) |
| 8 |
7
|
nrex |
⊢ ¬ ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 9 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 10 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 11 |
1
|
islp3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 12 |
11
|
3expa |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 13 |
12
|
notbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ¬ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 14 |
13
|
ralbidva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ¬ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 15 |
10 14
|
sylan |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ¬ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 16 |
9 15
|
bitr3id |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 17 |
|
rexanali |
⊢ ( ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ¬ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ↔ ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) ) |
| 18 |
|
nne |
⊢ ( ¬ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ↔ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) = ∅ ) |
| 19 |
|
vex |
⊢ 𝑥 ∈ V |
| 20 |
|
sneq |
⊢ ( 𝑜 = 𝑥 → { 𝑜 } = { 𝑥 } ) |
| 21 |
20
|
difeq2d |
⊢ ( 𝑜 = 𝑥 → ( 𝐴 ∖ { 𝑜 } ) = ( 𝐴 ∖ { 𝑥 } ) ) |
| 22 |
21
|
ineq2d |
⊢ ( 𝑜 = 𝑥 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝑜 = 𝑥 → ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ↔ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) = ∅ ) ) |
| 24 |
19 23
|
spcev |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) = ∅ → ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) |
| 25 |
18 24
|
sylbi |
⊢ ( ¬ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ → ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) |
| 26 |
25
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑏 ∧ ¬ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) |
| 27 |
26
|
reximi |
⊢ ( ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ¬ ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) |
| 28 |
17 27
|
sylbir |
⊢ ( ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) |
| 29 |
28
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) |
| 30 |
1
|
cmpcov2 |
⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) |
| 31 |
30
|
ex |
⊢ ( 𝐽 ∈ Comp → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) ) |
| 32 |
29 31
|
syl5 |
⊢ ( 𝐽 ∈ Comp → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑏 ∈ 𝐽 ( 𝑥 ∈ 𝑏 → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) ) |
| 34 |
16 33
|
sylbid |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) ) |
| 35 |
34
|
3adant3 |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) ) ) |
| 36 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) → 𝑧 ∈ Fin ) |
| 37 |
|
sseq2 |
⊢ ( 𝑋 = ∪ 𝑧 → ( 𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝑧 ) ) |
| 38 |
37
|
biimpac |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 = ∪ 𝑧 ) → 𝐴 ⊆ ∪ 𝑧 ) |
| 39 |
|
infssuni |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝑧 ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 40 |
39
|
3expa |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ) ∧ 𝐴 ⊆ ∪ 𝑧 ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 41 |
40
|
ancoms |
⊢ ( ( 𝐴 ⊆ ∪ 𝑧 ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ) ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 42 |
38 41
|
sylan |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 = ∪ 𝑧 ) ∧ ( ¬ 𝐴 ∈ Fin ∧ 𝑧 ∈ Fin ) ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 43 |
42
|
an42s |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑧 ∈ Fin ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 44 |
43
|
anassrs |
⊢ ( ( ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ∈ Fin ) ∧ 𝑋 = ∪ 𝑧 ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 45 |
36 44
|
sylanl2 |
⊢ ( ( ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑧 ) → ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 46 |
|
0fi |
⊢ ∅ ∈ Fin |
| 47 |
|
eleq1 |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 48 |
46 47
|
mpbiri |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∈ Fin ) |
| 49 |
|
snfi |
⊢ { 𝑜 } ∈ Fin |
| 50 |
|
unfi |
⊢ ( ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∈ Fin ∧ { 𝑜 } ∈ Fin ) → ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) ∈ Fin ) |
| 51 |
48 49 50
|
sylancl |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) ∈ Fin ) |
| 52 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑜 } ) |
| 53 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑜 } ) |
| 54 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) = ( 𝐴 ∪ { 𝑜 } ) |
| 55 |
53 54
|
sseqtrri |
⊢ 𝐴 ⊆ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) |
| 56 |
|
ss2in |
⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑜 } ) ∧ 𝐴 ⊆ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) ) → ( 𝑏 ∩ 𝐴 ) ⊆ ( ( 𝑏 ∪ { 𝑜 } ) ∩ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) ) ) |
| 57 |
52 55 56
|
mp2an |
⊢ ( 𝑏 ∩ 𝐴 ) ⊆ ( ( 𝑏 ∪ { 𝑜 } ) ∩ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) ) |
| 58 |
|
incom |
⊢ ( 𝐴 ∩ 𝑏 ) = ( 𝑏 ∩ 𝐴 ) |
| 59 |
|
undir |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) = ( ( 𝑏 ∪ { 𝑜 } ) ∩ ( ( 𝐴 ∖ { 𝑜 } ) ∪ { 𝑜 } ) ) |
| 60 |
57 58 59
|
3sstr4i |
⊢ ( 𝐴 ∩ 𝑏 ) ⊆ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) |
| 61 |
|
ssfi |
⊢ ( ( ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) ∈ Fin ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) ∪ { 𝑜 } ) ) → ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 62 |
51 60 61
|
sylancl |
⊢ ( ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 63 |
62
|
exlimiv |
⊢ ( ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 64 |
63
|
ralimi |
⊢ ( ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ → ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ) |
| 65 |
45 64
|
anim12ci |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑧 ) ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) → ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) |
| 66 |
65
|
expl |
⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) → ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) ) |
| 67 |
66
|
reximdva |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) ) |
| 68 |
67
|
3adant1 |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑧 ∧ ∀ 𝑏 ∈ 𝑧 ∃ 𝑜 ( 𝑏 ∩ ( 𝐴 ∖ { 𝑜 } ) ) = ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) ) |
| 69 |
35 68
|
syld |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ( ∀ 𝑏 ∈ 𝑧 ( 𝐴 ∩ 𝑏 ) ∈ Fin ∧ ∃ 𝑏 ∈ 𝑧 ¬ ( 𝐴 ∩ 𝑏 ) ∈ Fin ) ) ) |
| 70 |
8 69
|
mt3i |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) |