| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
c0mhm.0 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 3 |
|
c0mhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
| 4 |
|
mndmgm |
⊢ ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm ) |
| 5 |
4
|
anim2i |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 7 |
6 2
|
mndidcl |
⊢ ( 𝑇 ∈ Mnd → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 10 |
9 3
|
fmptd |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 11 |
7
|
ancli |
⊢ ( 𝑇 ∈ Mnd → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 14 |
6 13 2
|
mndlid |
⊢ ( ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 15 |
12 14
|
syl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 17 |
3
|
a1i |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 18 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑎 ) → 0 = 0 ) |
| 19 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 20 |
8
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 21 |
17 18 19 20
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑎 ) = 0 ) |
| 22 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑏 ) → 0 = 0 ) |
| 23 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 24 |
17 22 23 20
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑏 ) = 0 ) |
| 25 |
21 24
|
oveq12d |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) = ( 0 ( +g ‘ 𝑇 ) 0 ) ) |
| 26 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) → 0 = 0 ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 28 |
1 27
|
mgmcl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 29 |
28
|
3expb |
⊢ ( ( 𝑆 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 31 |
17 26 30 20
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = 0 ) |
| 32 |
16 25 31
|
3eqtr4rd |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 33 |
32
|
ralrimivva |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 34 |
10 33
|
jca |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 35 |
1 6 27 13
|
ismgmhm |
⊢ ( 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) ) ) |
| 36 |
5 34 35
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ) |