| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0rhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | c0rhm.0 | ⊢  0   =  ( 0g ‘ 𝑇 ) | 
						
							| 3 |  | c0rhm.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝐵  ↦   0  ) | 
						
							| 4 |  | eldifi | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →  𝑇  ∈  Ring ) | 
						
							| 5 | 4 | anim2i | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring ) ) | 
						
							| 6 |  | ringgrp | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  Grp ) | 
						
							| 7 |  | ringgrp | ⊢ ( 𝑇  ∈  Ring  →  𝑇  ∈  Grp ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →  𝑇  ∈  Grp ) | 
						
							| 9 | 1 2 3 | c0ghm | ⊢ ( ( 𝑆  ∈  Grp  ∧  𝑇  ∈  Grp )  →  𝐻  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 10 | 6 8 9 | syl2an | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  𝐻  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 12 |  | eqid | ⊢ ( 1r ‘ 𝑇 )  =  ( 1r ‘ 𝑇 ) | 
						
							| 13 | 11 2 12 | 0ring1eq0 | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →  ( 1r ‘ 𝑇 )  =   0  ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →   0   =  ( 1r ‘ 𝑇 ) ) | 
						
							| 15 | 14 | mpteq2dv | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →  ( 𝑥  ∈  𝐵  ↦   0  )  =  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝑥  ∈  𝐵  ↦   0  )  =  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) ) ) | 
						
							| 17 | 3 16 | eqtrid | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  𝐻  =  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 19 | 18 | ringmgp | ⊢ ( 𝑆  ∈  Ring  →  ( mulGrp ‘ 𝑆 )  ∈  Mnd ) | 
						
							| 20 |  | eqid | ⊢ ( mulGrp ‘ 𝑇 )  =  ( mulGrp ‘ 𝑇 ) | 
						
							| 21 | 20 | ringmgp | ⊢ ( 𝑇  ∈  Ring  →  ( mulGrp ‘ 𝑇 )  ∈  Mnd ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝑇  ∈  ( Ring  ∖  NzRing )  →  ( mulGrp ‘ 𝑇 )  ∈  Mnd ) | 
						
							| 23 | 18 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 24 | 20 12 | ringidval | ⊢ ( 1r ‘ 𝑇 )  =  ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) )  =  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) ) | 
						
							| 26 | 23 24 25 | c0mhm | ⊢ ( ( ( mulGrp ‘ 𝑆 )  ∈  Mnd  ∧  ( mulGrp ‘ 𝑇 )  ∈  Mnd )  →  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 27 | 19 22 26 | syl2an | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝑥  ∈  𝐵  ↦  ( 1r ‘ 𝑇 ) )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 28 | 17 27 | eqeltrd | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  𝐻  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 29 | 10 28 | jca | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  ( 𝐻  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐻  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) | 
						
							| 30 | 18 20 | isrhm | ⊢ ( 𝐻  ∈  ( 𝑆  RingHom  𝑇 )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring )  ∧  ( 𝐻  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐻  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) ) | 
						
							| 31 | 5 29 30 | sylanbrc | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  ( Ring  ∖  NzRing ) )  →  𝐻  ∈  ( 𝑆  RingHom  𝑇 ) ) |