| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0rhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
c0rhm.0 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 3 |
|
c0rhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
| 4 |
|
ringssrng |
⊢ Ring ⊆ Rng |
| 5 |
4
|
a1i |
⊢ ( 𝑆 ∈ Rng → Ring ⊆ Rng ) |
| 6 |
5
|
ssdifssd |
⊢ ( 𝑆 ∈ Rng → ( Ring ∖ NzRing ) ⊆ Rng ) |
| 7 |
6
|
sseld |
⊢ ( 𝑆 ∈ Rng → ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) ) |
| 8 |
7
|
imdistani |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ) |
| 9 |
|
rngabl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) |
| 10 |
|
ablgrp |
⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
| 12 |
|
eldifi |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) |
| 13 |
|
ringgrp |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
| 15 |
1 2 3
|
c0ghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 16 |
11 14 15
|
syl2an |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) |
| 19 |
17 2 18
|
0ring1eq0 |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 1r ‘ 𝑇 ) = 0 ) |
| 20 |
19
|
eqcomd |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 0 = ( 1r ‘ 𝑇 ) ) |
| 21 |
20
|
mpteq2dv |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 23 |
3 22
|
eqtrid |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 24 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 25 |
24
|
rngmgp |
⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Smgrp ) |
| 26 |
|
sgrpmgm |
⊢ ( ( mulGrp ‘ 𝑆 ) ∈ Smgrp → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) |
| 28 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
| 29 |
28
|
ringmgp |
⊢ ( 𝑇 ∈ Ring → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 30 |
12 29
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 31 |
24 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 32 |
28 18
|
ringidval |
⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) |
| 34 |
31 32 33
|
c0mgm |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mgm ∧ ( mulGrp ‘ 𝑇 ) ∈ Mnd ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 35 |
27 30 34
|
syl2an |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 36 |
23 35
|
eqeltrd |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 37 |
16 36
|
jca |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) |
| 38 |
24 28
|
isrnghmmul |
⊢ ( 𝐻 ∈ ( 𝑆 RngHom 𝑇 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
| 39 |
8 37 38
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RngHom 𝑇 ) ) |