| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
| 2 |
|
zrrhm.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 3 |
|
zrrhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
| 4 |
|
c0snmhm.z |
⊢ 𝑍 = ( 0g ‘ 𝑇 ) |
| 5 |
|
grpmnd |
⊢ ( 𝑆 ∈ Grp → 𝑆 ∈ Mnd ) |
| 6 |
|
grpmnd |
⊢ ( 𝑇 ∈ Grp → 𝑇 ∈ Mnd ) |
| 7 |
|
id |
⊢ ( 𝐵 = { 𝑍 } → 𝐵 = { 𝑍 } ) |
| 8 |
1 2 3 4
|
c0snmhm |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |
| 9 |
5 6 7 8
|
syl3an |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |
| 10 |
|
ghmmhmb |
⊢ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) → ( 𝑇 GrpHom 𝑆 ) = ( 𝑇 MndHom 𝑆 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 12 |
11
|
ancoms |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 14 |
9 13
|
mpbird |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |