| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
| 2 |
|
zrrhm.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 3 |
|
zrrhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
| 4 |
|
mndmgm |
⊢ ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm ) |
| 5 |
4
|
anim1i |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 7 |
6
|
ancomd |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ) |
| 8 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 9 |
|
hash1snb |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑏 𝐵 = { 𝑏 } ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑏 𝐵 = { 𝑏 } ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 12 |
11 2
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 16 |
15 3
|
fmptd |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 17 |
3
|
a1i |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 18 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑥 = 𝑏 ) → 0 = 0 ) |
| 19 |
|
vsnid |
⊢ 𝑏 ∈ { 𝑏 } |
| 20 |
19
|
a1i |
⊢ ( 𝐵 = { 𝑏 } → 𝑏 ∈ { 𝑏 } ) |
| 21 |
|
eleq2 |
⊢ ( 𝐵 = { 𝑏 } → ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ { 𝑏 } ) ) |
| 22 |
20 21
|
mpbird |
⊢ ( 𝐵 = { 𝑏 } → 𝑏 ∈ 𝐵 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝑏 ∈ 𝐵 ) |
| 24 |
17 18 23 14
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ 𝑏 ) = 0 ) |
| 25 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ 𝑏 ) = 0 ) |
| 26 |
25 25
|
oveq12d |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) = ( 0 ( +g ‘ 𝑆 ) 0 ) ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 28 |
11 27 2
|
mndlid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑆 ) ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 29 |
12 28
|
mpdan |
⊢ ( 𝑆 ∈ Mnd → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 33 |
|
simpr |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → 𝑇 ∈ Mgm ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝑇 ∈ Mgm ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → 𝑇 ∈ Mgm ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 37 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 38 |
1 37
|
mgmcl |
⊢ ( ( 𝑇 ∈ Mgm ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ) |
| 39 |
35 36 36 38
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ) |
| 40 |
|
eleq2 |
⊢ ( 𝐵 = { 𝑏 } → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ↔ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ { 𝑏 } ) ) |
| 41 |
|
elsni |
⊢ ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ { 𝑏 } → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) |
| 42 |
40 41
|
biimtrdi |
⊢ ( 𝐵 = { 𝑏 } → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 45 |
39 44
|
mpd |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) |
| 46 |
23 45
|
mpdan |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) |
| 47 |
46
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( 𝐻 ‘ 𝑏 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( 𝐻 ‘ 𝑏 ) ) |
| 49 |
48 25
|
eqtr2d |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → 0 = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) ) |
| 50 |
26 32 49
|
3eqtrrd |
⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 51 |
24 50
|
mpdan |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 52 |
|
id |
⊢ ( 𝐵 = { 𝑏 } → 𝐵 = { 𝑏 } ) |
| 53 |
52
|
raleqdv |
⊢ ( 𝐵 = { 𝑏 } → ( ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 54 |
52 53
|
raleqbidv |
⊢ ( 𝐵 = { 𝑏 } → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 56 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 59 |
56 58
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑐 = 𝑏 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) = ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝑐 = 𝑏 → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑐 = 𝑏 → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑏 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 64 |
61 63
|
eqeq12d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 65 |
59 64
|
2ralsng |
⊢ ( ( 𝑏 ∈ V ∧ 𝑏 ∈ V ) → ( ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 66 |
65
|
el2v |
⊢ ( ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 67 |
55 66
|
bitrdi |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 68 |
51 67
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 69 |
16 68
|
jca |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 70 |
69
|
ex |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 𝐵 = { 𝑏 } → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 71 |
70
|
exlimdv |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( ∃ 𝑏 𝐵 = { 𝑏 } → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 72 |
10 71
|
biimtrid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 73 |
72
|
3impia |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 74 |
1 11 37 27
|
ismgmhm |
⊢ ( 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ↔ ( ( 𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 75 |
7 73 74
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ) |