| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c1lip1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | c1lip1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | c1lip1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 4 |  | c1lip1.dv | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 5 |  | c1lip1.cn | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 | 6 | ne0ii | ⊢ ℝ  ≠  ∅ | 
						
							| 8 |  | ral0 | ⊢ ∀ 𝑥  ∈  ∅ ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 9 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 10 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 11 |  | icc0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,] 𝐵 )  =  ∅ ) | 
						
							| 14 | 13 | raleqdv | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) )  ↔  ∀ 𝑥  ∈  ∅ ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 15 | 8 14 | mpbiri | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 16 | 15 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ∀ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 17 |  | r19.2z | ⊢ ( ( ℝ  ≠  ∅  ∧  ∀ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 18 | 7 16 17 | sylancr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 20 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 22 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 24 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 25 |  | eqid | ⊢ sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  ) | 
						
							| 26 | 19 20 21 22 23 24 25 | c1liplem1 | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑘  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  →  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  =  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( 𝑘  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑘  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  →  ( ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  ↔  ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) ) | 
						
							| 30 | 29 | 2ralbidv | ⊢ ( 𝑘  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  ↔  ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) | 
						
							| 32 | 26 31 | syl | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) ) ) | 
						
							| 33 |  | breq1 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎  <  𝑏  ↔  𝑥  <  𝑏 ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝑎  =  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑏  −  𝑎 )  =  ( 𝑏  −  𝑥 ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝑎  =  𝑥  →  ( abs ‘ ( 𝑏  −  𝑎 ) )  =  ( abs ‘ ( 𝑏  −  𝑥 ) ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑎  =  𝑥  →  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) ) ) | 
						
							| 40 | 36 39 | breq12d | ⊢ ( 𝑎  =  𝑥  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) ) ) ) | 
						
							| 41 | 33 40 | imbi12d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  ↔  ( 𝑥  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) ) ) ) ) | 
						
							| 42 |  | breq2 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑥  <  𝑏  ↔  𝑥  <  𝑦 ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑏  =  𝑦  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 44 | 43 | fvoveq1d | ⊢ ( 𝑏  =  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 45 |  | fvoveq1 | ⊢ ( 𝑏  =  𝑦  →  ( abs ‘ ( 𝑏  −  𝑥 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑏  =  𝑦  →  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 47 | 44 46 | breq12d | ⊢ ( 𝑏  =  𝑦  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 48 | 42 47 | imbi12d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝑥  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑥 ) ) ) )  ↔  ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) ) | 
						
							| 49 | 41 48 | rspc2v | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) ) | 
						
							| 50 | 49 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) ) | 
						
							| 51 |  | pm2.27 | ⊢ ( 𝑥  <  𝑦  →  ( ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 53 | 50 52 | syld | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 54 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 55 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 56 | 55 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 57 |  | cncff | ⊢ ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 58 | 5 57 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 60 |  | simpl | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 61 |  | ffvelcdm | ⊢ ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 62 | 59 60 61 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 63 | 56 62 | eqeltrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 64 | 63 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 65 | 64 | subidd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 66 | 65 | abs00bd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  0 ) | 
						
							| 67 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 68 | 1 2 67 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 69 | 68 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 70 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 71 | 69 70 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 73 | 72 | subidd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  −  𝑥 )  =  0 ) | 
						
							| 74 | 73 | abs00bd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( 𝑥  −  𝑥 ) )  =  0 ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) )  =  ( 𝑘  ·  0 ) ) | 
						
							| 76 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 77 | 76 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 78 | 77 | mul01d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑘  ·  0 )  =  0 ) | 
						
							| 79 | 75 78 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) )  =  0 ) | 
						
							| 80 | 66 79 | breq12d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) )  ↔  0  ≤  0 ) ) | 
						
							| 81 | 54 80 | mpbiri | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) ) ) | 
						
							| 82 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 83 | 82 | fvoveq1d | ⊢ ( 𝑥  =  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 84 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑦  →  ( abs ‘ ( 𝑥  −  𝑥 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 86 | 83 85 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑥 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 87 | 81 86 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  =  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 88 | 87 | imp | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  =  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 89 | 88 | a1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  =  𝑦 )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 90 |  | breq1 | ⊢ ( 𝑎  =  𝑦  →  ( 𝑎  <  𝑏  ↔  𝑦  <  𝑏 ) ) | 
						
							| 91 |  | fveq2 | ⊢ ( 𝑎  =  𝑦  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( 𝑎  =  𝑦  →  ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( 𝑎  =  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 94 |  | oveq2 | ⊢ ( 𝑎  =  𝑦  →  ( 𝑏  −  𝑎 )  =  ( 𝑏  −  𝑦 ) ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( 𝑎  =  𝑦  →  ( abs ‘ ( 𝑏  −  𝑎 ) )  =  ( abs ‘ ( 𝑏  −  𝑦 ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝑎  =  𝑦  →  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) ) ) | 
						
							| 97 | 93 96 | breq12d | ⊢ ( 𝑎  =  𝑦  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) ) ) ) | 
						
							| 98 | 90 97 | imbi12d | ⊢ ( 𝑎  =  𝑦  →  ( ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  ↔  ( 𝑦  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) ) ) ) ) | 
						
							| 99 |  | breq2 | ⊢ ( 𝑏  =  𝑥  →  ( 𝑦  <  𝑏  ↔  𝑦  <  𝑥 ) ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑏  =  𝑥  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 101 | 100 | fvoveq1d | ⊢ ( 𝑏  =  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 102 |  | fvoveq1 | ⊢ ( 𝑏  =  𝑥  →  ( abs ‘ ( 𝑏  −  𝑦 ) )  =  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( 𝑏  =  𝑥  →  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) | 
						
							| 104 | 101 103 | breq12d | ⊢ ( 𝑏  =  𝑥  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) ) | 
						
							| 105 | 99 104 | imbi12d | ⊢ ( 𝑏  =  𝑥  →  ( ( 𝑦  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑦 ) ) ) )  ↔  ( 𝑦  <  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) | 
						
							| 106 | 98 105 | rspc2v | ⊢ ( ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( 𝑦  <  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) | 
						
							| 107 | 106 | ancoms | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( 𝑦  <  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) | 
						
							| 108 | 107 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( 𝑦  <  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  𝑦  <  𝑥 ) | 
						
							| 110 |  | fvres | ⊢ ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 111 | 110 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 112 |  | simpr | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 113 |  | ffvelcdm | ⊢ ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 114 | 59 112 113 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 115 | 111 114 | eqeltrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 116 | 115 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 117 | 64 116 | abssubd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 119 | 68 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 120 | 119 | sseld | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  →  𝑥  ∈  ℝ ) ) | 
						
							| 121 | 119 | sseld | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  𝑦  ∈  ℝ ) ) | 
						
							| 122 | 120 121 | anim12d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) ) ) | 
						
							| 123 | 122 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) ) | 
						
							| 124 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 125 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 126 |  | abssub | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( abs ‘ ( 𝑥  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 127 | 124 125 126 | syl2an | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( 𝑥  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 128 | 123 127 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( 𝑥  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( abs ‘ ( 𝑥  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 130 | 129 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 131 | 118 130 | breq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 132 | 131 | biimpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 133 | 109 132 | embantd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( ( 𝑦  <  𝑥  →  ( abs ‘ ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑦 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 134 | 108 133 | syld | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  <  𝑥 )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 135 |  | lttri4 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  <  𝑥 ) ) | 
						
							| 136 | 123 135 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  <  𝑥 ) ) | 
						
							| 137 | 53 89 134 136 | mpjao3dan | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 138 | 137 | ralrimdvva | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑘  ∈  ℝ )  →  ( ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 139 | 138 | reximdva | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ∃ 𝑘  ∈  ℝ ∀ 𝑎  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑎  <  𝑏  →  ( abs ‘ ( ( 𝐹 ‘ 𝑏 )  −  ( 𝐹 ‘ 𝑎 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑏  −  𝑎 ) ) ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 140 | 32 139 | mpd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 141 | 18 140 2 1 | ltlecasei | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝑘  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) |