Step |
Hyp |
Ref |
Expression |
1 |
|
c1lip3.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
c1lip3.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
c1lip3.f |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) |
4 |
|
c1lip3.rn |
⊢ ( 𝜑 → ( 𝐹 “ ℝ ) ⊆ ℝ ) |
5 |
|
c1lip3.dm |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) |
6 |
|
df-ima |
⊢ ( 𝐹 “ ℝ ) = ran ( 𝐹 ↾ ℝ ) |
7 |
6 4
|
eqsstrrid |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) |
8 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
10 |
9 5
|
ssind |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( ℝ ∩ dom 𝐹 ) ) |
11 |
|
dmres |
⊢ dom ( 𝐹 ↾ ℝ ) = ( ℝ ∩ dom 𝐹 ) |
12 |
10 11
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom ( 𝐹 ↾ ℝ ) ) |
13 |
1 2 3 7 12
|
c1lip2 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
14 |
9
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) ) |
15 |
9
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → 𝑦 ∈ ℝ ) ) |
16 |
14 15
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
18 |
|
fvres |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
19 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
20 |
18 19
|
oveqan12rd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
22 |
21
|
breq1d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
23 |
22
|
biimpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
24 |
17 23
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
25 |
24
|
ralimdvva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
26 |
25
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
27 |
13 26
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |