| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c1liplem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | c1liplem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | c1liplem1.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | c1liplem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 5 |  | c1liplem1.dv | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 6 |  | c1liplem1.cn | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 7 |  | c1liplem1.k | ⊢ 𝐾  =  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  ) | 
						
							| 8 |  | imassrn | ⊢ ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ⊆  ran  abs | 
						
							| 9 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 10 |  | frn | ⊢ ( abs : ℂ ⟶ ℝ  →  ran  abs  ⊆  ℝ ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ran  abs  ⊆  ℝ | 
						
							| 12 | 8 11 | sstri | ⊢ ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ⊆  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ⊆  ℝ ) | 
						
							| 14 |  | dvf | ⊢ ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℂ | 
						
							| 15 |  | ffun | ⊢ ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℂ  →  Fun  ( ℝ  D  𝐹 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ Fun  ( ℝ  D  𝐹 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  Fun  ( ℝ  D  𝐹 ) ) | 
						
							| 18 |  | cncff | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 19 |  | fdm | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 20 | 5 18 19 | 3syl | ⊢ ( 𝜑  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 21 |  | ssdmres | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 23 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 24 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 25 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 26 | 23 24 3 25 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 27 |  | funfvima2 | ⊢ ( ( Fun  ( ℝ  D  𝐹 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝐴 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( Fun  ( ℝ  D  𝐹 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) )  ∧  𝐴  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝐴 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 29 | 17 22 26 28 | syl21anc | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝐴 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 30 |  | ffun | ⊢ ( abs : ℂ ⟶ ℝ  →  Fun  abs ) | 
						
							| 31 | 9 30 | ax-mp | ⊢ Fun  abs | 
						
							| 32 |  | imassrn | ⊢ ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ran  ( ℝ  D  𝐹 ) | 
						
							| 33 |  | frn | ⊢ ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℂ  →  ran  ( ℝ  D  𝐹 )  ⊆  ℂ ) | 
						
							| 34 | 14 33 | ax-mp | ⊢ ran  ( ℝ  D  𝐹 )  ⊆  ℂ | 
						
							| 35 | 32 34 | sstri | ⊢ ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℂ | 
						
							| 36 | 9 | fdmi | ⊢ dom  abs  =  ℂ | 
						
							| 37 | 35 36 | sseqtrri | ⊢ ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  ⊆  dom  abs | 
						
							| 38 |  | funfvima2 | ⊢ ( ( Fun  abs  ∧  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  ⊆  dom  abs )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝐴 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝐴 ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 39 | 31 37 38 | mp2an | ⊢ ( ( ( ℝ  D  𝐹 ) ‘ 𝐴 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝐴 ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 40 |  | ne0i | ⊢ ( ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝐴 ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ≠  ∅ ) | 
						
							| 41 | 29 39 40 | 3syl | ⊢ ( 𝜑  →  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ≠  ∅ ) | 
						
							| 42 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 43 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 44 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 45 | 42 43 44 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) | 
						
							| 46 | 45 5 | sselid | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 47 |  | cniccbdd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ∃ 𝑎  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 ) | 
						
							| 48 | 1 2 46 47 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 ) | 
						
							| 49 |  | fvelima | ⊢ ( ( Fun  abs  ∧  𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) )  →  ∃ 𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 )  =  𝑏 ) | 
						
							| 50 | 31 49 | mpan | ⊢ ( 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ∃ 𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 )  =  𝑏 ) | 
						
							| 51 |  | fvres | ⊢ ( 𝑏  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) ) ) | 
						
							| 54 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑏  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  =  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ) | 
						
							| 55 | 54 | breq1d | ⊢ ( 𝑥  =  𝑏  →  ( ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  ↔  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) )  ≤  𝑎 ) ) | 
						
							| 56 | 55 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) )  ≤  𝑎 ) | 
						
							| 57 | 53 56 | eqbrtrrd | ⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) )  ≤  𝑎 ) | 
						
							| 58 | 57 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) )  ≤  𝑎 ) | 
						
							| 59 |  | fveq2 | ⊢ ( ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 60 | 59 | breq1d | ⊢ ( ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦  →  ( ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑏 ) )  ≤  𝑎  ↔  ( abs ‘ 𝑦 )  ≤  𝑎 ) ) | 
						
							| 61 | 58 60 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  ∧  𝑏  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦  →  ( abs ‘ 𝑦 )  ≤  𝑎 ) ) | 
						
							| 62 | 61 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  →  ( ∃ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦  →  ( abs ‘ 𝑦 )  ≤  𝑎 ) ) | 
						
							| 63 |  | fvelima | ⊢ ( ( Fun  ( ℝ  D  𝐹 )  ∧  𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ∃ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦 ) | 
						
							| 64 | 16 63 | mpan | ⊢ ( 𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  →  ∃ 𝑏  ∈  ( 𝐴 [,] 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑏 )  =  𝑦 ) | 
						
							| 65 | 62 64 | impel | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  ∧  𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ 𝑦 )  ≤  𝑎 ) | 
						
							| 66 |  | breq1 | ⊢ ( ( abs ‘ 𝑦 )  =  𝑏  →  ( ( abs ‘ 𝑦 )  ≤  𝑎  ↔  𝑏  ≤  𝑎 ) ) | 
						
							| 67 | 65 66 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  ∧  𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( abs ‘ 𝑦 )  =  𝑏  →  𝑏  ≤  𝑎 ) ) | 
						
							| 68 | 67 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  →  ( ∃ 𝑦  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 )  =  𝑏  →  𝑏  ≤  𝑎 ) ) | 
						
							| 69 | 50 68 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  →  ( 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  𝑏  ≤  𝑎 ) ) | 
						
							| 70 | 69 | ralrimiv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎 )  →  ∀ 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) 𝑏  ≤  𝑎 ) | 
						
							| 71 | 70 | ex | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  →  ∀ 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) 𝑏  ≤  𝑎 ) ) | 
						
							| 72 | 71 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) )  ≤  𝑎  →  ∃ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) 𝑏  ≤  𝑎 ) ) | 
						
							| 73 | 48 72 | mpd | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) 𝑏  ≤  𝑎 ) | 
						
							| 74 | 13 41 73 | suprcld | ⊢ ( 𝜑  →  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 75 | 7 74 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 76 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 77 | 76 | fvresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 78 |  | cncff | ⊢ ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 79 | 6 78 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 81 | 80 76 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 82 | 81 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 83 | 77 82 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 84 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 85 | 84 | fvresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 86 | 80 84 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 87 | 86 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 88 | 85 87 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 89 | 83 88 | subcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 90 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 91 | 1 2 90 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 92 | 91 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 93 | 92 76 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 94 | 92 84 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℝ ) | 
						
							| 95 | 93 94 | resubcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑦  −  𝑥 )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑦  −  𝑥 )  ∈  ℂ ) | 
						
							| 97 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  <  𝑦 ) | 
						
							| 98 |  | difrp | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  <  𝑦  ↔  ( 𝑦  −  𝑥 )  ∈  ℝ+ ) ) | 
						
							| 99 | 94 93 98 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑥  <  𝑦  ↔  ( 𝑦  −  𝑥 )  ∈  ℝ+ ) ) | 
						
							| 100 | 97 99 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑦  −  𝑥 )  ∈  ℝ+ ) | 
						
							| 101 | 100 | rpne0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑦  −  𝑥 )  ≠  0 ) | 
						
							| 102 | 89 96 101 | absdivd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  =  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  /  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 103 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ⊆  ℝ ) | 
						
							| 104 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  ≠  ∅ ) | 
						
							| 105 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ∃ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) 𝑏  ≤  𝑎 ) | 
						
							| 106 | 31 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  Fun  abs ) | 
						
							| 107 | 89 96 101 | divcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ℂ ) | 
						
							| 108 | 107 36 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  dom  abs ) | 
						
							| 109 | 94 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℝ* ) | 
						
							| 110 | 93 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℝ* ) | 
						
							| 111 | 94 93 97 | ltled | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  ≤  𝑦 ) | 
						
							| 112 |  | ubicc2 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑥  ≤  𝑦 )  →  𝑦  ∈  ( 𝑥 [,] 𝑦 ) ) | 
						
							| 113 | 109 110 111 112 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ( 𝑥 [,] 𝑦 ) ) | 
						
							| 114 | 113 | fvresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 115 |  | lbicc2 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ*  ∧  𝑥  ≤  𝑦 )  →  𝑥  ∈  ( 𝑥 [,] 𝑦 ) ) | 
						
							| 116 | 109 110 111 115 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( 𝑥 [,] 𝑦 ) ) | 
						
							| 117 | 116 | fvresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 118 | 114 117 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 119 | 118 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 120 |  | iccss2 | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 121 | 120 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 122 | 121 | resabs1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( 𝑥 [,] 𝑦 ) )  =  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) | 
						
							| 123 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 124 |  | rescncf | ⊢ ( ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( 𝑥 [,] 𝑦 ) )  ∈  ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) ) | 
						
							| 125 | 121 123 124 | sylc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( 𝑥 [,] 𝑦 ) )  ∈  ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) | 
						
							| 126 | 122 125 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) )  ∈  ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) | 
						
							| 127 | 42 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ℝ  ⊆  ℂ ) | 
						
							| 128 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 129 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 130 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 131 | 129 130 | elpm2 | ⊢ ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  ↔  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 132 | 131 | simplbi | ⊢ ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 133 | 128 132 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 134 | 131 | simprbi | ⊢ ( 𝐹  ∈  ( ℂ  ↑pm  ℝ )  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 135 | 128 134 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 136 |  | iccssre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) | 
						
							| 137 | 94 93 136 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) | 
						
							| 138 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 139 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 140 | 138 139 | dvres | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : dom  𝐹 ⟶ ℂ )  ∧  ( dom  𝐹  ⊆  ℝ  ∧  ( 𝑥 [,] 𝑦 )  ⊆  ℝ ) )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) | 
						
							| 141 | 127 133 135 137 140 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) | 
						
							| 142 |  | iccntr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 143 | 94 93 142 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 144 | 143 | reseq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 145 | 141 144 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 146 | 145 | dmeqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ) | 
						
							| 147 |  | ioossicc | ⊢ ( 𝑥 (,) 𝑦 )  ⊆  ( 𝑥 [,] 𝑦 ) | 
						
							| 148 | 147 121 | sstrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑥 (,) 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 149 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 150 | 148 149 | sstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑥 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 151 |  | ssdmres | ⊢ ( ( 𝑥 (,) 𝑦 )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 152 | 150 151 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 153 | 146 152 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) )  =  ( 𝑥 (,) 𝑦 ) ) | 
						
							| 154 | 94 93 97 126 153 | mvth | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ∃ 𝑎  ∈  ( 𝑥 (,) 𝑦 ) ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 155 | 145 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) | 
						
							| 156 | 155 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) | 
						
							| 157 |  | fvres | ⊢ ( 𝑎  ∈  ( 𝑥 (,) 𝑦 )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑎 ) ) | 
						
							| 158 | 157 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑎 ) ) | 
						
							| 159 | 156 158 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑎 ) ) | 
						
							| 160 | 16 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  Fun  ( ℝ  D  𝐹 ) ) | 
						
							| 161 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 162 | 148 | sseld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑎  ∈  ( 𝑥 (,) 𝑦 )  →  𝑎  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 163 | 162 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  𝑎  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 164 |  | funfvima2 | ⊢ ( ( Fun  ( ℝ  D  𝐹 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) )  →  ( 𝑎  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑎 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 165 | 164 | imp | ⊢ ( ( ( Fun  ( ℝ  D  𝐹 )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  ( ℝ  D  𝐹 ) )  ∧  𝑎  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑎 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 166 | 160 161 163 165 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑎 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 167 | 159 166 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 168 |  | eleq1 | ⊢ ( ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  →  ( ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  ↔  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 169 | 167 168 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝑥  <  𝑦  ∧  𝑎  ∈  ( 𝑥 (,) 𝑦 ) ) )  →  ( ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  →  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 170 | 169 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( 𝑎  ∈  ( 𝑥 (,) 𝑦 )  →  ( ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  →  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 171 | 170 | rexlimdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ∃ 𝑎  ∈  ( 𝑥 (,) 𝑦 ) ( ( ℝ  D  ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 )  =  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  →  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 172 | 154 171 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 )  −  ( ( 𝐹  ↾  ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 173 | 119 172 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 174 |  | funfvima | ⊢ ( ( Fun  abs  ∧  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  dom  abs )  →  ( ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 175 | 174 | imp | ⊢ ( ( ( Fun  abs  ∧  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  dom  abs )  ∧  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) )  ∈  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 176 | 106 108 173 175 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  ∈  ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 177 | 103 104 105 176 | suprubd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  ≤  sup ( ( abs  “  ( ( ℝ  D  𝐹 )  “  ( 𝐴 [,] 𝐵 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 178 | 177 7 | breqtrrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑦  −  𝑥 ) ) )  ≤  𝐾 ) | 
						
							| 179 | 102 178 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  /  ( abs ‘ ( 𝑦  −  𝑥 ) ) )  ≤  𝐾 ) | 
						
							| 180 | 89 | abscld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 181 | 75 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝐾  ∈  ℝ ) | 
						
							| 182 | 96 101 | absrpcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( 𝑦  −  𝑥 ) )  ∈  ℝ+ ) | 
						
							| 183 | 180 181 182 | ledivmuld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  /  ( abs ‘ ( 𝑦  −  𝑥 ) ) )  ≤  𝐾  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( ( abs ‘ ( 𝑦  −  𝑥 ) )  ·  𝐾 ) ) ) | 
						
							| 184 | 179 183 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( ( abs ‘ ( 𝑦  −  𝑥 ) )  ·  𝐾 ) ) | 
						
							| 185 | 182 | rpcnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( 𝑦  −  𝑥 ) )  ∈  ℂ ) | 
						
							| 186 | 181 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  𝐾  ∈  ℂ ) | 
						
							| 187 | 185 186 | mulcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( ( abs ‘ ( 𝑦  −  𝑥 ) )  ·  𝐾 )  =  ( 𝐾  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 188 | 184 187 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝐾  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 189 | 188 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝐾  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 190 | 189 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝐾  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) | 
						
							| 191 | 75 190 | jca | ⊢ ( 𝜑  →  ( 𝐾  ∈  ℝ  ∧  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥  <  𝑦  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 𝐾  ·  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) ) ) ) |