Metamath Proof Explorer


Theorem cad0

Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016) (Proof shortened by Wolf Lammen, 21-Sep-2024)

Ref Expression
Assertion cad0 ( ¬ 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 df-cad ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) )
2 idd ( ¬ 𝜒 → ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) )
3 pm2.21 ( ¬ 𝜒 → ( 𝜒 → ( 𝜑𝜓 ) ) )
4 3 adantrd ( ¬ 𝜒 → ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) ) )
5 2 4 jaod ( ¬ 𝜒 → ( ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) → ( 𝜑𝜓 ) ) )
6 1 5 syl5bi ( ¬ 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) → ( 𝜑𝜓 ) ) )
7 cad11 ( ( 𝜑𝜓 ) → cadd ( 𝜑 , 𝜓 , 𝜒 ) )
8 6 7 impbid1 ( ¬ 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑𝜓 ) ) )