Step |
Hyp |
Ref |
Expression |
1 |
|
df-cad |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) |
2 |
|
idd |
⊢ ( ¬ 𝜒 → ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) ) |
3 |
|
pm2.21 |
⊢ ( ¬ 𝜒 → ( 𝜒 → ( 𝜑 ∧ 𝜓 ) ) ) |
4 |
3
|
adantrd |
⊢ ( ¬ 𝜒 → ( ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) → ( 𝜑 ∧ 𝜓 ) ) ) |
5 |
2 4
|
jaod |
⊢ ( ¬ 𝜒 → ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) → ( 𝜑 ∧ 𝜓 ) ) ) |
6 |
|
orc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) |
7 |
5 6
|
impbid1 |
⊢ ( ¬ 𝜒 → ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
8 |
1 7
|
syl5bb |
⊢ ( ¬ 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |