| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cadan |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 2 |
|
3anass |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
| 3 |
1 2
|
bitri |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
| 4 |
|
olc |
⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ) ) |
| 5 |
|
olc |
⊢ ( 𝜒 → ( 𝜓 ∨ 𝜒 ) ) |
| 6 |
4 5
|
jca |
⊢ ( 𝜒 → ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 7 |
6
|
biantrud |
⊢ ( 𝜒 → ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) ) |
| 8 |
3 7
|
bitr4id |
⊢ ( 𝜒 → ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ) ) ) |