| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3or |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
| 2 |
|
cador |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
| 3 |
|
andi |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) |
| 4 |
3
|
orbi1i |
⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
| 5 |
1 2 4
|
3bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
| 6 |
|
ordir |
⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
| 7 |
|
ordi |
⊢ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
| 8 |
|
orcom |
⊢ ( ( ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| 9 |
|
animorl |
⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) |
| 10 |
|
pm4.72 |
⊢ ( ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ) ) |
| 11 |
9 10
|
mpbi |
⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| 12 |
8 11
|
bitr4i |
⊢ ( ( ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 ∨ 𝜒 ) ) |
| 13 |
7 12
|
anbi12i |
⊢ ( ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 14 |
5 6 13
|
3bitri |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 15 |
|
df-3an |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 16 |
14 15
|
bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |