Metamath Proof Explorer


Theorem cadbi123d

Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses cadbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
cadbid.2 ( 𝜑 → ( 𝜃𝜏 ) )
cadbid.3 ( 𝜑 → ( 𝜂𝜁 ) )
Assertion cadbi123d ( 𝜑 → ( cadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ cadd ( 𝜒 , 𝜏 , 𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 cadbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 cadbid.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 cadbid.3 ( 𝜑 → ( 𝜂𝜁 ) )
4 1 2 anbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )
5 1 2 xorbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )
6 3 5 anbi12d ( 𝜑 → ( ( 𝜂 ∧ ( 𝜓𝜃 ) ) ↔ ( 𝜁 ∧ ( 𝜒𝜏 ) ) ) )
7 4 6 orbi12d ( 𝜑 → ( ( ( 𝜓𝜃 ) ∨ ( 𝜂 ∧ ( 𝜓𝜃 ) ) ) ↔ ( ( 𝜒𝜏 ) ∨ ( 𝜁 ∧ ( 𝜒𝜏 ) ) ) ) )
8 df-cad ( cadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( 𝜓𝜃 ) ∨ ( 𝜂 ∧ ( 𝜓𝜃 ) ) ) )
9 df-cad ( cadd ( 𝜒 , 𝜏 , 𝜁 ) ↔ ( ( 𝜒𝜏 ) ∨ ( 𝜁 ∧ ( 𝜒𝜏 ) ) ) )
10 7 8 9 3bitr4g ( 𝜑 → ( cadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ cadd ( 𝜒 , 𝜏 , 𝜁 ) ) )