Step |
Hyp |
Ref |
Expression |
1 |
|
cadbid.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
cadbid.2 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
3 |
|
cadbid.3 |
⊢ ( 𝜑 → ( 𝜂 ↔ 𝜁 ) ) |
4 |
1 2
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜏 ) ) ) |
5 |
1 2
|
xorbi12d |
⊢ ( 𝜑 → ( ( 𝜓 ⊻ 𝜃 ) ↔ ( 𝜒 ⊻ 𝜏 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝜂 ∧ ( 𝜓 ⊻ 𝜃 ) ) ↔ ( 𝜁 ∧ ( 𝜒 ⊻ 𝜏 ) ) ) ) |
7 |
4 6
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜃 ) ∨ ( 𝜂 ∧ ( 𝜓 ⊻ 𝜃 ) ) ) ↔ ( ( 𝜒 ∧ 𝜏 ) ∨ ( 𝜁 ∧ ( 𝜒 ⊻ 𝜏 ) ) ) ) ) |
8 |
|
df-cad |
⊢ ( cadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∨ ( 𝜂 ∧ ( 𝜓 ⊻ 𝜃 ) ) ) ) |
9 |
|
df-cad |
⊢ ( cadd ( 𝜒 , 𝜏 , 𝜁 ) ↔ ( ( 𝜒 ∧ 𝜏 ) ∨ ( 𝜁 ∧ ( 𝜒 ⊻ 𝜏 ) ) ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( cadd ( 𝜓 , 𝜃 , 𝜂 ) ↔ cadd ( 𝜒 , 𝜏 , 𝜁 ) ) ) |