Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cadcoma | ⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜑 , 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) | |
| 2 | xorcom | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( 𝜓 ⊻ 𝜑 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ↔ ( 𝜒 ∧ ( 𝜓 ⊻ 𝜑 ) ) ) | 
| 4 | 1 3 | orbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ( 𝜓 ⊻ 𝜑 ) ) ) ) | 
| 5 | df-cad | ⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) | |
| 6 | df-cad | ⊢ ( cadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ( 𝜓 ⊻ 𝜑 ) ) ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜑 , 𝜒 ) ) |