| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cadan | 
							⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 )  ∧  ( 𝜓  ∨  𝜒 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3ancoma | 
							⊢ ( ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 )  ∧  ( 𝜓  ∨  𝜒 ) )  ↔  ( ( 𝜑  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜓 )  ∧  ( 𝜓  ∨  𝜒 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝜓  ∨  𝜒 )  ↔  ( 𝜒  ∨  𝜓 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							3anbi3i | 
							⊢ ( ( ( 𝜑  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜓 )  ∧  ( 𝜓  ∨  𝜒 ) )  ↔  ( ( 𝜑  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜓 )  ∧  ( 𝜒  ∨  𝜓 ) ) )  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							3bitri | 
							⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜓 )  ∧  ( 𝜒  ∨  𝜓 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cadan | 
							⊢ ( cadd ( 𝜑 ,  𝜒 ,  𝜓 )  ↔  ( ( 𝜑  ∨  𝜒 )  ∧  ( 𝜑  ∨  𝜓 )  ∧  ( 𝜒  ∨  𝜓 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitr4i | 
							⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  cadd ( 𝜑 ,  𝜒 ,  𝜓 ) )  |