Step |
Hyp |
Ref |
Expression |
1 |
|
xor2 |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
2 |
1
|
rbaib |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ⊻ 𝜓 ) ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
3 |
2
|
anbi1d |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝜑 ⊻ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ) |
4 |
|
ancom |
⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) |
5 |
|
andir |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
6 |
3 4 5
|
3bitr3g |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
7 |
6
|
pm5.74i |
⊢ ( ( ¬ ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
8 |
|
df-or |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) |
9 |
|
df-or |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
11 |
|
df-cad |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) |
12 |
|
3orass |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
13 |
10 11 12
|
3bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |