Metamath Proof Explorer


Theorem cadrot

Description: Rotation law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion cadrot ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜒 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 cadcoma ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜑 , 𝜒 ) )
2 cadcomb ( cadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜒 , 𝜑 ) )
3 1 2 bitri ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜒 , 𝜑 ) )