Metamath Proof Explorer


Theorem calemes

Description: "Calemes", one of the syllogisms of Aristotelian logic. All ph is ps , and no ps is ch , therefore no ch is ph . In Aristotelian notation, AEE-4: PaM and MeS therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses calemes.maj 𝑥 ( 𝜑𝜓 )
calemes.min 𝑥 ( 𝜓 → ¬ 𝜒 )
Assertion calemes 𝑥 ( 𝜒 → ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 calemes.maj 𝑥 ( 𝜑𝜓 )
2 calemes.min 𝑥 ( 𝜓 → ¬ 𝜒 )
3 con2 ( ( 𝜓 → ¬ 𝜒 ) → ( 𝜒 → ¬ 𝜓 ) )
4 3 alimi ( ∀ 𝑥 ( 𝜓 → ¬ 𝜒 ) → ∀ 𝑥 ( 𝜒 → ¬ 𝜓 ) )
5 2 4 ax-mp 𝑥 ( 𝜒 → ¬ 𝜓 )
6 1 5 camestres 𝑥 ( 𝜒 → ¬ 𝜑 )